Category Archives: Uncategorized

Keeping up with science policy

If you have three minutes every month to devote to keeping up with science policy, I highly recommend subscribing to APS’s Signal Boost. Signal Boost is a monthly video update about key developments in science policy. Among other things, they provide critical information on the budgeting process for science funding in the House and Senate along with how to contact your elected officials about each issue. Scientists are a small group, so we need to speak up to be heard.

This month: appropriations and a bill to fight harassment in STEM:

Book Review: A Guide to Writing for Scientists

Title: A Guide to Writing for Scientists: How to write more easily and effectively throughout your scientific career

cover of book

Author: Stephen B. Heard

Heard has produced an excellent guide to scientific writing that despite its 300 pages, is a pleasure to read. He addresses a huge array of issues that affect scientific writing and manages to do so in a manner that seems to apply well to all scientific writing. Given the gap between Heard’s field and my own, I would say that is a notable accomplishment. In addition to style, peer review, and other issues, Heard offers excellent advice on the process of writing and how one can become a more productive writer.

I highly recommend this book to any scientist. This is a great book to read a little as a time as you sit down to write you next paper. English as an additional language scientists may be especially interested in the chapter on writing in English for non-native speakers.

Find it on: Goodreads, or Amazon

New preprint: Metamagnetism and zero-scale-factor universality in the 2D J-Q model

I just submitted a new manuscript to PRB and posted it on arXiv (arXiv:1804.06045). This paper is a collaboration with Anders Sandvik and Kedar Damle. This is paper builds on our previous work on the field-driven saturation transition in the 1D J-Q model to study the saturation transition in 2D.

figure 4 from the paper

Fig 4. Magnetization density as a function of field for various values of s=Q with J+Q=1.

Metamagnetism: Using QMC, we find magnetization jumps to the saturated state (metamagnetism) above a critical coupling ratio (Q/J)min. We then use an exact method based on a high magnetization expansion to determine (Q/J)min. Above (Q/J)min the saturation transition is discontinuous (featuring a magnetization jump) and below (Q/J)min the transition is continuous.

Zero-scale-factor universality: When the saturation transition is continuous it is governed by zero-scale-factor universality. First proposed by Sachdev, Senthil and Shankar in 1994, zero-scale-factor universality is characterized by response functions that depend only on the bare parameters and no non-universal numbers. Remarkably, there had be no previous numerical or experimental verification of the scaling forms predicted in the 1994 Sachdev paper. Our QMC results confirm that the leading order scaling forms work and find logarithmic divergences at low temperature. These divergences are to be expected, since two spatial dimensions is the upper critical dimension of the zero-scale-factor universality, and the Sachdev paper even proposes a form for this divergence. When comparing to our QMC results, we find that the Sachdev form for the logarithmic divergences does not appear to be correct.

If you would like to know more all the details are on arxiv.