I just presented a talk“Quenching to field-stabilized magnetization plateaus in the unfrustrated Ising antiferromagnet” based on my preprint that I posted on arXiv last week at the Annual Meeting of the Physical Society of Taiwan at National Pingtung University in Pingtung, Taiwan. I haven’t gotten around to making a post about this paper yet (that is coming soon), but in the meantime I will post my slides from this talk here. My slides included some movies of the process of freezing in to magnetization plateaus. Since PDFs can’t include movies I will post the movies below.
The spin configuration over time starting from a random (T=∞) state and doing single spin flip Metropolis updates at T=0 and h=1 until we arrive at a final frozen state. Individual spin states are denoted by the (+) and (-); the background shading shows which of the antiferromagnetic ground states each site is in. In the final frozen state the domain walls are all straight lines or corners with (+) on the inside.
The spin configuration over time starting from a random (T=∞) state and doing single spin flip Metropolis updates at T=0 and h=3 until we arrive at a final frozen state. Individual spin states are denoted by the (+) and (-); the background shading shows which of the antiferromagnetic ground states each site is in. In the final frozen state the domain walls are all diagonal or square-wave-like with excess (+) spin.